博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
具体了解哈夫曼树和背包问题
阅读量:7200 次
发布时间:2019-06-29

本文共 8001 字,大约阅读时间需要 26 分钟。

写在前面

  • 近期在疯狂复习数据结构和算法,尽管看完了一部完整的视频。可是转眼看看自己手中的《剑指Offer》里面还是不是非常清楚。。。

    而且近期也突然认为自己知识和别人比起来就是一个渣渣。

    各种被人家吊打。。。

  • 这两个算法一个(哈夫曼树)是看近期视频动手实践的,一个(背包问题)是前段时间一个面试里面的题目,当时不知道这是一个系类的问题。昨天和大神聊完天之后才明确。所以乘着短暂的热情还在就记录下来先从哈夫曼树開始。!

1.哈夫曼树(实现主要的编码解码)

  • 简单定义:

    给定n个权值作为n个叶子结点。构造一棵二叉树。若带权路径长度达到最小。称这种二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。

    哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

    复杂的文字定义我认为以后肯定不会看。

    。所以直接来一张哈夫曼树的构造过程简单明了。。

    这里写图片描写叙述

1.模型构造

// 节点类    public static class Node implements Comparable
{
String data; double weight; Node leftChild; Node rightChild; Node parent; public boolean isLeftChild() { return parent != null && this == parent.leftChild; } public Node() { } public Node(String data, double weight) { this.data = data; this.weight = weight; } @Override public String toString() { return "Node [data=" + data + ", weight=" + weight + "]"; } //队列排序依据 public int compareTo(Node o) { return (int) (weight - o.weight); } public boolean isLeaf() { return data.length() == 1; } }

包括属性:

属性 定义 类型
data 数据 String
weight 权值 double
leftChild 左节点 Node
rightChild 右节点 Node
parent 父节点 Node

2.统计字符出现的次数,用出现的次数作为权值

  • 这里实现的思路是:将出现的字符串(C)和次数(count)保存为一个Map<字符。次数>对象,然后再保存为List集合
public static Map
statistics(char[] charArray) { Map
map = new HashMap
(); for (char c : charArray) { Character character = new Character(c); if (map.containsKey(character)) { map.put(character, map.get(character) + 1); } else { map.put(character, 1); } } return map; } public static List
statisticsProbability(Map
maps) { List
list = new ArrayList
(); for (Map.Entry
map : maps.entrySet()) { Node node = new Node(map.getKey().toString(), map.getValue()); list.add(node); } return list; }

3.依据统计的List进行哈夫曼树的构造

首先List中保存的就是Node集合。当中Node的data就是字符串,Node的weight就是出现的次数也就是权值

哈夫曼树的构造:

  • 首先利用Java中的priorityQueue方法进行模拟队列

priorityQueue的使用方法

这里写图片描写叙述
当中主要的方法:

方法 作用
add 将指定元素插入到次优先级队列
poll 获取而且移除队列头
peek 获取可是不移出队列
  • 将List中的数据保存到队列里面去
PriorityQueue
priorityQueue = new PriorityQueue
(); for (int i = 0; i < nodes.size(); i++) { priorityQueue.add(nodes.get(i)); }
  • 然后利用poll方法获取队列头节点,这里可能就由疑问了,哈夫曼树不是要求依照权值最小的两个開始组成树嘛。

    这里为什么随便从队列里面弄两个出来就能够。

    事实上是这种;在Node定义的时候实现了Comparable接口而且实现了compareTo(E e)方法,这里事实上就已经实现了队列里面的排序
    这里写图片描写叙述

  • 然后构建两个子节点的父节点。而且声明三者之间的关系(父子,左右)
// 构建父节点            Node sumNode = new Node(node1.data + node2.data, node1.weight                    + node2.weight);            sumNode.leftChild = node1;            sumNode.rightChild = node2;            node1.parent = sumNode;            node2.parent = sumNode;
  • 然后再将父节点保存到队列中去:这样做的目的是为了得到根节点
priorityQueue.add(sumNode);
  • 最后返回根节点 priorityQueue.poll();

这样,到这里哈夫曼树的构建就完毕了,可是既然学习了就深入一点。

哈夫曼树的最长用途就是用来文件压缩,由于我们知道发送一句话的时候并非每一个字母出现的频率都是一样的,有的出现的多有的出现的少,可是如果还是使用一样额编码那样会有非常大的消耗,所以这里我们就用哈夫曼树实现对字符串的编码和解码

4.依据形成的二叉树进行编码

这里写图片描写叙述

如图所看到的,我们须要得到的编码就如图中那样

  • A:parent
  • B:0
  • C:1
  • D:00
  • E:10

所以须要做的就推断该节点为左孩子还是右孩子

// 编码    public static String encode(String originalStr) {        if (originalStr == null || originalStr.equals("")) {            return "";        }        char[] charArray = originalStr.toCharArray();        leafNodes = statisticsProbability(statistics(charArray));        createTree(leafNodes);        Map
encodeInfo = buildEncodeInfo(leafNodes); StringBuffer buf = new StringBuffer(); for (char c : charArray) { Character character = new Character(c); buf.append(encodeInfo.get(character)); } return buf.toString(); } // 遍历二叉树,如果为左则前缀为0 右前缀为1 private static Map
buildEncodeInfo(List
leafNodes) { Map
codewords = new HashMap
(); for (Node node : leafNodes) { Character character = new Character(node.data.charAt(0)); String codeword = ""; Node currrentNode = node; do { if (currrentNode.isLeftChild()) { codeword = "0" + codeword; } else { codeword = "1" + codeword; } currrentNode = currrentNode.parent; } while (currrentNode.parent != null); codewords.put(character, codeword); } return codewords; }

该方法返回的为一段编码的01数字。所以如今压缩了就须要解码了

5.依据编码的二叉树进行响应的解码

解码的思路就是依据01进行区分

// 解码    public static String decode(String binaryStr) {        if (binaryStr == null && binaryStr.equals("")) {            return "";        }        char[] binaryCharArray = binaryStr.toCharArray();        LinkedList
binaryList = new LinkedList
(); int length = binaryCharArray.length; for (int i = 0; i < length; i++) { binaryList.addLast(new Character(binaryCharArray[i])); } Node tree = createTree(leafNodes); StringBuffer buf = new StringBuffer(); while (binaryList.size() > 0) { Node node = tree; do { Character c = binaryList.removeFirst(); if (c.charValue() == '0') { node = node.leftChild; } else { node = node.rightChild; } } while (!node.isLeaf()); buf.append(node.data); } return buf.toString(); }

6.数据測试

这里写图片描写叙述

到这里哈夫曼树的创建和使用就基本结束了。。感觉算法是个无底洞啊。

。。

2.背包问题

  • 问题描写叙述:
    1.给定 n 个背包,其重量分别为 w1,w2,……,wn, 价值分别为 v1,v2,……,vn
    2.要放入总承重为 totalWeight 的箱子中,
    3.求可放入箱子的背包价值总和的最大值。

一样,首先构造模型

1.构造模型

包括两个属性:

属性 定义 类型
weight 重量 int
value 价值 int
public class Knapsack {
/** 背包重量 */ private int weight; /** 背包物品价值 */ private int value; /*** * 构造器 */ public Knapsack(int weight, int value) { this.value = value; this.weight = weight; } public int getWeight() { return weight; } public int getValue() { return value; } public String toString() { return "[weight: " + weight + " " + "value: " + value + "]"; } }

包括一个构造器

2.问题分析

如果给定的重量为5 背包的数量为5 我们须要解决的是给定重量为5的时候找到的最大价值

那么如今能够这样分析

  • 给定的重量为1的时候,分别求给0,1,2。3。4,5个背包的时候能够得到的最大价值
  • 给定的重量为5的时候,分别求给0,1,2。3,4,5个背包的时候能够得到的最大价值

通过这种动态划分就能够得到一个二维矩阵。而矩阵中填入的值就是得到的最大价值

演示样例分析

1.求最佳矩阵

如果给定的5个背包分别为A(2,10),B(3,15),C(2,6),D(2,7),E(4,10);给定的最大容量为5

那么刚刚的矩阵就能够写出来 矩阵N(背包数量,重量)

价值 1 2 3 4 5
1 0 10 10 10 10
2 0 10 15 10 25
3 0 10 15 16 25
4 0 10 15 13 25
5 0 10 14 17 25

×当中横向为重量,竖向为当前(可供挑选的背包)的背包

2.求最佳背包组成

知道了最佳背包的矩阵。那么我们如今就能够開始求当前重量下能够由哪些背包组成最大价值了 n=总背包数量 =5,j=总的重量 =5
求解最优背包组成:
求N(n,j)>N(n-1,j); 得到n=2 同一时候此时将j = j-N(2).weight; j = 2
接着求n(n,2)>N(n-1,j) 得到n=1; 此时 j = j-N(1).weight; j=0
到这里就都求出来了。

增加的背包为A(2,10) B(3,15) 最大价值为N(n,5) = 25;

3.代码演示样例

public void save(){        //就是在totalWeight中依次(totalWeight=1,2,3..)最优的背包组成        for (int i = 0; i <= totalWeight; i++) {            for (int j = 0; j <= n; j++) {                if(i==0 || j==0){                     bestvalues[j][i] =0;                }                else{                    //假如当前的重量比当前背包的重量小                    //意思就是当前背包的重量已经超过了总重量                    //那么最优矩阵就是在这个背包前一个了                    if(i
(); } //找到最优价值是由那几个背包组成 int tempWeight = totalWeight; for (int i = n; i >=1; i--) { if(bestvalues[i][tempWeight]>bestvalues[i-1][tempWeight]){ bestSolution.add(bags[i-1]); tempWeight -=bags[i-1].getWeight(); } if(tempWeight == 0){
break;} } bestValue = bestvalues[n][totalWeight]; }

4.效果演示

这里写图片描写叙述

这里写图片描写叙述
这里写图片描写叙述
写在最后:一入算法深思海,写这篇博客也几乎相同用了三四个小时吧。当中大部分内容是參考其它人的博客。

说实话如今脑子有点炸。可是想着立即就能够去郑州内心还是有点小许的期待。

你可能感兴趣的文章
Android 7.0 PopupWindow 错位移位问题
查看>>
XAMPP安装
查看>>
Thread interrupt
查看>>
博客搬家至简书
查看>>
Linux上的free命令详解
查看>>
使用Maven运行Java main的3种方式
查看>>
linux主目录下各个子目录的作用
查看>>
[问题]javax.servlet不存在的问题
查看>>
Hive学习总结之五:HBase和Hive的集成
查看>>
Windows7系统中启动Windows Event Log服务提示拒绝访问,错误5的解决方法
查看>>
mybatis--缓存(一级和二级缓存)
查看>>
centos 配置 nginx + fcgiwrap + git
查看>>
Eclipse下Maven打包非法字符问题
查看>>
选区M(选中、增加选区、减去选区、相交)
查看>>
关于failed mergeDebugeResources的一些主要错误(不定时更新)
查看>>
FreeMarker标签
查看>>
AngularJS 中的 Promise 和 设计模式
查看>>
《从面试题来看源码》,单参数,多参数,如何正确使用@Param
查看>>
《JavaScript设计模式》学习日志
查看>>
MySql 建表、添加字段、修改字段、添加索引SQL语句写法
查看>>